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A comprehensive review is given of investigations, both theoretical and experimental, that demonstrate in-
terference to take place even when the fields involved are produced by independent sources. The physical
situation is rather different for coherent and incoherent fields. In the first case, where the sources are
lasers, a conventional interference pattern can be observed which is adequately described by the classical
theory. In the present paper, special attention is paid to the question of whether this interference persists
when the two laser beams become strongly attenuated. In the second case, the sources are individual atoms
excited by a pumping mechanism, that emit spontaneously and, hence, independently from each other. In
those circumstances, no interference pattern can show up. However, it becomes evident from both the clas-
sical and the quantum-mechanical theory that interference effects can still be established by observing in-
tensity correlations rather than the intensity itself. This point is discussed in greater detail. The pioneering
experiments of Forrester, Gudmundson and Johnson, and Brown and Twiss are reviewed in this context.
Especially interesting from the theoretical point of view is the case of two emitting atoms, since then the
classical and the quantum-mechanical description differ significantly, the quantum theory predicting the in-
tensity correlations to be distinctly stronger than those following from classical considerations. This specif-
ic quantum-mechanical feature is shown to be intimately connected with the corpuscular aspect of light.
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I. INTRODUCTION

As early as 1930 Dirac, in his famous textbook on
quantum mechanics (Dirac, 1930), made a basic statement
on optical interference: "Each photon interferes only
with itself. Interference between two different photons
never occurs. " While the first part of this assertion un-

doubtedly provides the correct quantum-mechanical inter-
pretation of all conventional interference experiments, its
second part cannot be upheld as a general rule forbidding
independent photons, i.e., photons being emitted by in-
dependent sources, to interfere.

Of course, Dirac is right with respect to the experimen-
tal techniques that were at. the optical researcher's dispo-

sal at that time. On the one hand, only light sources of a
thermal nature (consisting of independent, "elementary"
radiators) were available, and, on the other hand, interfer-
ence could be detected only in the form of stationary pat-
terns (by means of a photographic plate or the eye) indica-
tive of inhomogeneous distributions of the light intensity
in space. In these circumstances, only interference of the
photon with itself can be observed; in other words, only
light beams that originate from a common primary beam
(produced with the help of a beam-splitting device like a
half-silvered mirror or simply a screen with some little
holes in it) can be made to interfere.

Since then, however, impressive progress in the
development of both light sources and detectors has taken
place. First, the laser was invented, a marvelous new
light source that (for the first time in the history of op-
tics) made possible the production of coherent radiation.
Second, the advent of fast photodetectors made fiuctua-
tion phenomena occurring in optical fields accessible to
observation. In fact, intensity correlations (both spatial
and temporal) can be measured with these devices, as was
demonstrated first by Brown and Twiss (1956a). Both in-
ventions opened new areas of experimental investigation
and, in particular, made possible novel types of interfer-
ence experiments.

The availability of lasers naturally led to the question
of whether the light beams from two lasers that are in-
dependently operated might interfere, the answer —as one
might expect from classical electrodynamics, an affirma-
tive one—being first given by Magyar and Mandel (1963).
With the help of photocells or photomultipliers, on the
other hand, correlation measurements can be performed
that show interference to have taken place, even in situa-
tions where no interference pattern is observable.

Interference is thus understood in a more general sense
than in classical optics, where it is synonymous with the
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occurrence of a (stationary) intensity pattern or a beat sig-
nal produced by two coherent light waves differing a little
in their frequencies. However, we should be aware of the
fact that the reason for this conventional point of view is
merely our inability to observe directly the electrical field
strength residing in optical fields. Basically, interference
means superposition of electromagnetic fields, and any
experiment indicating that such a superposition has taken
place deserves to be called an interference experiment. In
this sense, the observation of photoelectric mixing of in-
coherent light by Forrester, Gudmundson, and Johnson
(1955) and the detection of spatial intensity correlations in
thermal light by Brown and Twiss (1956a) are the first ex-
periments that provided evidence of interference between
photons spontaneously emitted by different atoms. Hence
the second part of Dirac's famous statement quoted above
has actually been disproved.

It is the purpose of the present paper to give a
comprehensive review of both the theoretical and the ex-
perimental work on interference between independent
photons that has been carried out in the last thirty years.
Emphasis will be placed on the physical concepts rather
than formal considerations. Since interference is basically
a classical phenomenon one encounters whenever one has
to deal with waves (the interference between water waves,
for instance, is something we experience in our child-
hood), it appears natural to start by reviewing the main
features of the classical description of interference. This
will be done in Sec. II. From the viewpoint of classical
theory, the ideal conditions for interference to show up
are provided by two coherent waves. Since these can
nowadays be produced with the help of single-mode
lasers, we are led to consider interference between in-
dependent lasers beams in Sec. III. In this context, the
iinportant question arises of whether this interference
phenomenon will persist when the two laser beams are
strongly attenuated, so that only a few photons are con-
tained in the coherence volume. This problem will be
treated in Sec. III.C, while Sec. IV deals with interference
effects in incoherent light. The basic experiments are re-
viewed and a physical explanation is given. Further, it
will be shown theoretically that interference between two
photons emitted independently by two excited atoms be-
comes manifest in a modulation of the intensity correla-
tion function. This case deserves special attention, since
here the quantum-mechanical predictions differ distinctly
from the classical ones.

II. CLASSICAL DESCRIPTION
OF INTERFERENCE

A. Interference between coherent beams

strengths. It is obvious that in this process the phases of
the waves play an important role. The situation is sim-
plest, of course, when the phases do not noticeably vary in
time. (Practically, we require them to be constant only
over time intervals of the length of the observation time. )

Then an interference pattern will show up in the intensity
of the superposition fieM. .

I.et us consider, for simplicity, two monochromatic
traveling plane waves linearly polarized in the same direc-
tion; we may write the positive-frequency part of the elec-
tric field strength in the two beams labeled j as

EJ+'(r, t) =EJ.e ' ' ' (j =I,II) . (2.1)

Here EJ (assumed real) is the amplitude, kj the wave
vector, coj the circular frequency, and 4J. the phase. In a
strictly monochromatic wave, both the amplitude and the
phase are constants. The intensity, defined conveniently
as one-half of the square of the electric field strength
averaged over some oscillation periods, in the superposi-
tion field follows from Eq. (2.1):

I(r, t) =Ei +Eii

+2EiEiicos[(kii —ki)I' —(coii —coi)t

—(Nii —@i)j . (2.2)
This well-known formula describes a standing (spatial) in-
terference pattern for coi ——toii. It should be emphasized
that its position critically depends on the phase difference

On the other hand, for different frequen-
cies con&toi a sinusoidal temporal modulation of the in-
tensity at any given point in space is predicted.

These two phenomena, as simple as they appear from
the theoretical viewpoint, nevertheless could not be ob-
served until the advent of the laser, which, for the first
time, made it possible to produce coherent light, i.e., light
whose phase (and amplitude) remains constant in time in-
tervals long enough for an actual observation to be made.
The corresponding experiments performed in the early
days of the laser era will be described in Sec. III.A.

B. QonyentionaI interference
experiments

Unlike laser radiation, light from conventional sources
exhibits rapid fluctuations in both the amplitude and the
phase of the electric field strength. In particular, the
phase undergoes many random changes during the obser-
vation time. Hence two independent beams emitted from
two sources (or two different parts of the same source)
cannot produce an observable interference pattern, since
according to Eq. (2.2) the instantaneous pattern—
provided the intensity is so high that interference fringes
will be formed at all' over the short time intervals in

As already mentioned in Sec. I, interference is to be un-
derstood quite generally as a superposition of waves, i.e.,
an algebraic addition of the corresponding "elongations"
which, in optics, are to be specified as the electric and
(with minor experimental relevance) the magnetic field

In the detection process the particle aspect of light becomes
dominant. Hence an interference pattern can be formed only by
a large number of photons that produce, for instance, blackened
spots in a photographic plate.
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C. Intensity correlations

The development of photodetectors made possible the
observation of intensity correlations in light fields (pre-
ferentially incoherent ones). Postponing a description of
the experimental procedure to Secs. III.D, IV.A, and
IV.B, I shall first discuss this subject from the viewpoint
of classical theory.

Generally, the intensity correlation function is defined
as the mean value of the product of two intensities
I(ri, ti) and I(r2, t2)

6' '(ri, t„.r2, t2) = « I(ri, ti )I(r2, t2) » . (2.3)

The averaging, indicated by the double angular bracket, is
over an ensemble. (It is well known that for stationary
fields the ensemble average is equivalent to the temporal
average, as a consequence of the ergodic behavior of the
field. )

'

which the phases remain constant —will be displaced, by a
random fraction of the fringe spacing, whenever the
phases 4& and Nqq "jump. "

There is, however, a way out of this problem. Since the
interference term on the right-hand side of Eq. (2.2) de-
pends only on the phase difference b,@=@»—@1, only
the phase difference is actually required to remain con-
stant. This allows the phases themselves to fluctuate.
However, the fluctuations of N, and @» must not be in-
dependent; instead, a definite correlation should be estab-
lished between them such that one copies, more or less
precisely, the other. Experimentally, this is achieved (e.g.,
by means of a beam splitter) by making the interfering
beams replicas of only one primary beam. In fact, all
conventional interference experiments are of this kind.
However, care has to be taken that the path difference be-
tween two such beams, in the receiving plane, does not
exceed the coherence length, since this length marks,
roughly speaking, the distance (in the direction of beam
propagation) over which the phase remains virtually con-
stant, on the average. Hence the individual field strengths
(residing at the same position) in the two beams will no
longer be correlated when one of them is "shifted" with
respect to the other by more than the coherence length.

From the quantum-mechanical point of view, the basic
mechanism underlying conventional interference experi-
ments is, in Dirac's words, "the interference of the photon
with itself. " In fact, it has been demonstrated experimen-
tally by several authors [see, for instance, Taylor (1909);
Janossy and Naray (1957,1958)] that the interference phe-
nomena still persist, without loss of visibility, down to in-
tensities so extremely low that the time interval between
the arrival of any photon and the next is much longer, on
the average, than the transit time through the apparatus
(e.g., a Fabry-Perot interferometer).

Hence the interference of the photon with itself is well
established, both experimentally and theoretically. Since
my attention is focused on interference between indepen-
dent photons, I have mentioned only the main aspects of
what is usually understood by interference in optics.

In the special case of equal intensities in the two beams,
Ii ——Iii, Eq. (2.4) takes the simple form

G' '(ri, t;r2, t)

= «I»'I 1+—,
' cos[(k» —ki)(r2 —ri) ]j, (2.5)

where « I» =Ii+Iii ——2Ii is the mean intensity.
It is not difficult to take into account amplitude or in-

tensity fluctuations, in addition to the phase fluctuations
considered thus far, in the two beams. Assuming the am-
plitudes Ei and E» to fluctuate independently of one
another and of the phases, we can easily generalize Eq.
(2.4) in the form

G' '(ri, t;r2, t)

= « Ii »+ « Iii »
1

+2« II »« I» » I 1+«s[«» —ki)(r2 ii)] j

When the intensity fluctuations are of the type known
from thermal light, « IJ » is just twice the value of
« IJ » (j=I,II). Then from Eq. (2.6) we obtain, for
« I »=« I »,

G' '(r„t;r2, t)= —,
' « I» I 1+—,

' cos[(k» —ki)(r2 —r, )]j .

(2.7)

Obviously, the intensity correlation depends sensitively
on the difference r2 —ri. One learns from comparison of
Eqs. (2.5) and (2.7) that this effect is most pronounced in
the absence of intensity fluctuations in the individual
beams. It is, nevertheless, noticeable also in the case of
strong intensity fluctuations, as they are exhibited by
thermal light.

What I want to show now' is that specific intensity
correlations exist even in situations where the mean inten-
sity is constant in space, and hence no interference pattern
is observable with the help of conventional techniques.
Since they are brought about by superposition of different
waves, these correlations provide indirect evidence that
interference has taken place.

As before, let us consider the simple case of two plane
waves with equal frequencies and polarization properties.
For simplicity, we assume the amplitudes Eq and Ejl to
be fixed. The phases, however, fluctuate randomly and
independently of one another. (In the formal description
we thus have to deal with an ensemble of two-field sys-
tems with randomly distributed phases 4&i and @».)

Consequently, the ensemble average over the intensity
is constant in space, as follows directly from Eq. (2.2).
However, the intensity correlation function (2.3), taken
for ti t2, exhib—i—ts a distinct spatial modulation. In fact,
one easily finds from Eqs. (2.2) and (2.3), putting Ei =Ii
and Egg =Ipse,

2

G' '(r1, t;r2, t) = « I(ri, t)I(r2, t) »

=(Ii+I»)'+2I1I»cos[«ii —ki)«2 rl)] .

(2.4)
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Let us denote, for convenience, the direction of the vec-
tor kz —ki as the z direction, which allows us to write
Ak(z2 —zi) (where b,k is the difference of the z com-
ponents of kii and k„respectively) instead of
(kii —ki)(rz —ri). All the correlation functions (2.4)—(2.7)
take their maxima when

b, k (z2 —z, ) =0 mod 2m,

whereas minima occur for

(2.8)

b, k (zz —zi ) =~ mod Zm . (2.9)

For a physical interpretation of these results, we need
only look at Eq. (2.2) which describes the interference pat-
tern showing up in the case of any fixed phase difference
N« —N&. This formula indicates that the intensity pattern
is periodic in z, the period being given by

(2.10)

(2.11)

which is certainly true. Evaluating the left-hand side of
this inequality, one immediately finds, under the assump-
tion ((I'(r„r) )) = ((I'(r2, t) )),

In particular, A equals the distance, in the z direction, be-
tween two neighboring maxima of the (total) intensity,
i.e., the fringe spacing.

Hence condition (2.8) means that the z coordinates of
the two points ri and rz differ by just a multiple of the
fringe spacing. Similarly, condition (2.9) requires that the
difference between z2 and zi coincide with an odd num-
ber of half-fringe spacings.

Intuitively, the variation of the intensity correlation
functions (2.4)—(2.7) can be understood in the following
manner. In case (2.8) remarkably large contributions to
G' ' will come from those special realizations of the field
(corresponding to an appropriate value of the phase
difference) where one of the points r„r2 lies in the neigh-
borhood of an intensity maximum, since then, according
to what has been said before, the other point will do the
same. This will make the ensemble average of
I (ri, t)I (r2, t) larger than in case (2.9), where the situation
is quite different: When the intensity happens to be max-
imum at r~, it will be just minimum at r2, so that the
product of both intensities vanishes.

That 6' ' takes, in fact, an absolute maximum, when
condition (2.9) is fulfilled, can be seen from a quite gen-
eral argument. Since the "instantaneous" interference
pattern (2.2) is periodic in space, we are actually dealing
with the correlation function G' '(ri, t;ri, t), even when

zz —zi is a nonzero multiple of the fringe spacing; it is
well known from statistical communication theory that
the (auto)correlation function has an absolute maximum
when the two arguments coincide. This is readily proved
[see, for example, Middleton (1960)] by starting from the
relation

The variation of 6' ' with r2 —ri is displayed even more
distinctly when we consider the deviation from the mean
intensity,

b, I(r, t) =I(r, t) ((I—)), (2.13)

+2((I, )) ((I„))cos[Ak (z, —z, )],
(2.15)

where b,IJ (j=I,II) is the mean-square deviation of
the intensities in the individual beams, AIJ—:(((IJ—((I~ )) ) )) = ((IJ )) —((IJ )) . When the intensi-
ties Ii and I» are constant, Eq. (2.15) reduces to the sim-
ple form

(( ZEI(r, , t)EI(r, ,t) })

=2IiIii cos[b,k (z2 —z2 ) ]
= —,

' ((I))'cos[Ak(z, —z, )] for I =I„. (2.16)

This correlation function takes on positive as well as neg-
ative values. In the latter case one speaks of anticorrela-
tions. Plainly these are strongest when the distance be-
tween zi and z2 equals an odd half-number of fringe
spacings.

Thus it has been shown that intensity correlations ex-
hibit interference effects even in situations where no con-
.ventional interference pattern is observable. Certainly
this feature will not be restricted to the plane-wave field
configuration considered thus far. Of special physical in-
terest will be the case of two or more spontaneously emit-
ting atoms. We first discuss this problem in a classical
model, postponing the quantum-mechanical treatment to
Secs. IV.C and IV.D.

To this end, we calculate the intensity correlation func-
tion for the superposition field produced by two Hertzian
oscillators, radiating with random phases. We separate
the dipole moment oscillating at m into a positive- and a
negative-frequency part, d=d'+'+d' ', and set, for con-
venience,

d'+'(r) =da (t), (2.17)

where the vector d (assumed real) indicates both the
direction and, through its length, the maximum ampli-
tude of the dipole oscillation. As a result of radiation
damping, the dipole, once put into oscillation at t =0 and
afterwards left to itself, will be damped exponentially,

a(t)=e '"'a(t), a(t)=e '" " for t&0. (2.18)

rather than the intensity [note that the mean intensity
((I )) is constant in space, as follows from Eq. (2.2)].

From Eq. (2.13) we find the correlation function to be

((M(ri, t)bI(rz, t) )) = ((I(r„t)I(r2,t) )) —((I))2 . (2.14)

Utilizing Eq. (2.6) and noticing that ((I)) = ((Ii ))
+ ((I» }),we can rewrite Eq. (2.14) as

((I'(r„t) )) & ((I(r„r)I(r,, r))) . (2.12) Here we have taken the initial value a (0)=a(0) as unity.
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I ager on, a (constant) phase factor exp( —i@) will be at-
tached explicitly.

According to the well-known theory of the Hertzian os-
cillator, the electric field strength in the far field can be
written as [see Kimble and Mandel (1976)]

T

The field originating from two dipoles located at ri and
rqq, respectively, is thus given by

(2.19) (2.21)

where ro is the position of the dipole and

2

(2.20)

describes the spatial distribution of the dipole radiation.

Here we have introduced phase factors that we assume to
be randomly distributed, thus modeling from the classical
viewpoint the spontaneous emission process.

Froin Eq. (2.21) we find the intensity, for a fixed value
of b,@=@it—@i, to be

2

/r —ri/+ f(r —ri) f(r —ru) a~~ t— /r —rii/ —ih@+c c (2.22)

The average intensity is simply the sum of the intensities in the individual dipole waves,

((I(r, t) )}= f (r—ri) a i t fr —ri/ + f (r —rii) aii t—2 /r —ru/
(2.23)

More interesting is the intensity correlation function. Introducing the abbreviitions

f„j——f(r„—rj ), T„J t——(v=1,2; j=I,II)
C

(2.24)

and utilizing Eq. (2.22), we find, after averaging over b,N,

G"'(r„t;r,, t) —= ((1(r„t)I(rz,t) ))

=[fii I(zi(T(i)
I

'+ fiii I
(zii{»ii) I

'][fzi
I ui(»i) I

'+fzii
I ~ii{»n) I

']
+(fiif)n)(fziifzi)[(zi {Tii)ui(Tzi)(zii(»n)(zii(T(ii)+c. c ] . . (2.25)

Obviously, the final terms in square brackets describe an interference effect. According to Eqs. (2.18) and (2.24), they
depend on ri and rz as follows:

interference terms=(fiifiii)(fziifzi)(Ti(T(i)(zi(»i)(zii(Tzii)~ii(T)ii)exp[&k«zi —&2II+rlii i"II)]+cc (2.26)

where the abbreviation factor a, at a given time t, i.e., we can put

r„j= ~

r„—rj ~

(v=1,2;j=l,ll) (2.27) ai(T(i) =&i(»i) =(Tii{T(ii) =(Tn(»ii) =a . (2.29)

fli f2I flii f2II (2.28)

Let us assume that the emission process starts at t =0
in both oscillators. Since the damping constant 1 in Eq.
(2.18) will be small in comparison to the oscillation fre-
quency u, we can neglect the variation in the damping

has been used and k denotes the wave number, k =co/c.
In cases of practical interest, the distance between the

two emitters, as well as that between the points r] and r2
in the receiving plane, will be small compared to the dis-
tance of ri and rz from the emitters. Then the f's will be
nearly equal,

Note that a still depends on the observation time t. Of
course, the latter should be chosen such that a comes
close to its maximum value.

In the approximation described by Eqs. (2.28) and
(2.29), the variation of G' )(r), t;rz, t) is determined by the
exponential in Eq. (2.26), and Eq. (2.25) reduces to the
simple form

G' '(ri, t;rz, t)=4f a I 1+Y~cosfk("zi —"zii

+xiii-&)i)]I .
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Comparing this result with the intensity (2.22) (for fixed
b.@) which, under the assumptions (2.28) and (2.29), reads

1(r, r) =2 f2a zt I+cos[k(
I

I —II
I

—
I

r —Ill
I
)+/Ey] I

one recognizes that the relationship between 6' ' and I is
of the same kind as in the case of two plane waves with
fluctuating phases considered above [see Eqs. (2.5} and
(2.2}]. The results even become formally identical when
wc spcclallzc to flic geometrical collflglll'atloll depleted lll
Fig. 1.

Under the assumptions s «D;
I
zl I, I

zz I
&&D, the

distances r„j, to a good approximation, are given by

atom with the point r where the observation is made.
This deviation is, however, negligibly small in our approx-
imation. ) We can thus interpret the vector kr~ ' as the
wave vector of a photon k„ that arrives at r when emit-
ted by either atom I or atom II. We can thus replace Eq.
(2.33) by

k(re re) =—kv(rl —rn) (v=1,2), (2.34)

which allows us to rewrite Eq. (2.30) as

6' '(r, , t;r2, t)=4f a 1 1+—,'cos[(k2 —kl)(rn —rl}]I .

(2.35)

r

s /2+z
rvgg =D 1+—

'2

2
s /2 —z„

r„g ——D 1+—

(v=1,2)

(2.32)

Until now, we have dealt with a common time argu-
ment t in the intensity correlation function. This restric-
tion is, however, not essential. In fact, in the case of two
time arguments I I and t2, we need only make the follow-
ing identification in Eq. (2.25):

which implies

(v= 1,2;j= I,II) .
C.

(2.36)

SZ
r„II—rvl= (v=1 2) .

D
(2.33)

Hence we need only identify the ratio ks/D with Itr.k in
the previous example [with (k» —kl)(r2 —rl) replaced by
b,k (z2 —zl) in Eq. (2.5)] to get identical results.

For later comparison with the literature, we rewrite Eq.
(2.33) in a different way. First, one observes from Fig. 1

that the z direction coincides with the direction of rq —rqq.

Hence the right-hand side of Eq. (2.33) can be written as
D '(rl —r»)r» where the point midway between rl and

rlq has been taken as the origin of the coordinate system
(see Fig. 1). Now, the vector r+ ' is approximately a
unit vector, in the above approximation

I
z

I
«D. It

points to the position r„where one of the detectors is
placed, and hence indicates —in a naive photon picture
which we shall adopt for the present —the direction in
which a photon must have been emitted when it is ob-
served at r„. (Actually, the direction of r+ ' differs a
little from the "true" direction of emission given by the
line that links the position of either the first or the second

Now, one observes from Eqs. (2.18) and (2.25) that the
phase factors exp(icot„), exp( i cot„)—cancel separately for
@=1 and v=2. Hence Eq. (2.30) remains valid [provided,
of course, that t, and t2 do not differ so much as to in-
validate the assumption (2.29)).

It is a simple matter, too, to generalize our result (2.30)
in a different respect. Instead of two dipoles let us con-
sider two groups of dipoles distributed around the points
rI and rq&, respectively. The distance of any individual di-
pole from the corresponding center (rl or rll) is, however,
so small that the relevant path differences
k(

I
r —r

I

—
I
r —rk

I
} wh«« is any po int in th«eceiv-

ing plane and r;, rk are the positions of any two oscilla-
tors, do not change noticeably when the coordinates r;, rk
are replaced by those of the respective centers. Using the
label m (n) for dipoles in the vicinity of rl (r«), we can
thus write approximately

k(lr —r
I lr r 'I }=k(lr r

I Ir —r„

(2.37)

f
r —r~

I

—Ir —r„
I
)=k( Ir rl

I Ir —rill } (238)

g
atom I

I

I

~ atom rr

I

detector
-I I

I

I

I

—I ———
I

I

I detector
I

I

I

', I- ——z = 0

Z2

Under these conditions, Eq. (2.30) is easily extended to the
present case. Let us denote the number of oscillators in
the two groups by M and X, respectively. Looking at Eq.
(2.25), we find the following contributions to G' '

(suppressing, for the moment, the common factor f a ):
(a) the sum of the (average) intensities of all the indivi-

dual waves, squared, i.e., (M +2V);
(b) the terms similar to Eq. (2.26), describing the in-

terference between waves emitted by any two oscillators
belonging to the same group; in the approximation (2.37)
they sum up to yield

FIG. 1. Geometry for the observation of intensity correlations. M(M —1)+X(K—1);
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(c) the "genuine" interference terms of the type (2.26),
connected with the emission of two oscillators that are
members of different groups; by virtue of Eq. (2.38), they
give us

2MN cos[k (r21 —r2II +r III —rII )]

We thus arrive at the following expression for the in-

tensity correlation function:

G' '(rI, t;r2, t)

= f"a 4I (M +N)2+ M(M 1)+—N (N —1)

+2MN cos[k (I 21 I 211+rIII I 11)1j

(2.39)

Setting M =N and assuming N to be large, we obtain

6' '(rI, t;r2, t)=6N f a "I1+—,'cos[k(r21 —r2»

+~111-&II)) j

(2.40)

which closely resembles our previous result (2.7) describ-
ing the interference between two plane waves with
thermally fluctuating intensities. Of course, this coin-
cidence is no accident. In fact, in our present model the
two light beams originating from the two groups of oscil-
lators, respectively, exhibit strong intensity fluctuations,
being of thermal character for N &&1, as a result of the
incoherent superposition of many elementary waves.

In conclusion, the main result of our analysis thus far is
that interference effects become manifest in intensity
correlations, even under circumstances that prevent the
observation of interference patterns by conventional
means.

III. INTERFERENCE BETWEEN INDEPENDENT

LASER BEAMS

A. Intense beams

By virtue of its excellent monochromaticity and direc-
tivity, in conjunction with amplitude stabilization, a laser
beam comes very close to what is classically described as
a monochromatic traveling plane wave with fixed phase
and amplitude. It should be kept in mind, however, that
this holds true only for time intervals shorter than the
coherence time.

Under ideal experimental conditions (fixed positions of
the resonator mirrors, constant pump strength, etc.) the
coherence time t„h is predominantly determined by phase
fluctuations: the phase in the laser field is subjected to
some kind of diffusion process, and the length of the time
interval over which the phase remains virtually constant,
on average, defines t, h. The reciprocal value of t, h then
gives us the bandwidth (in the sense of a fundamental
lower limit), which is, in fact, extremely small. (It is
about 10 Hz for typical gas laser conditions. )

In practice, however, the frequency of a single-mode
laser undergoes variations, in the course of time, that are
very much larger. [For instance, frequency drifts of 100
kHz/sec have been observed in a He-Ne laser by Javan,
Ballik, and Bond (1962).j Those frequency variations
caused mainly by mechanical instabilities of the laser
resonator drastically restrict the length of the time inter-
val T during which laser radiation can be described as a
classical monochromatic wave (with fixed phase and am-
plitude). This critical value of T, which may be con-
sidered as an effective coherence time T„h, is obviously
determined by the requirement that the reciprocal of the
frequency drift hv occurring during T„h be equal to
~cob.

Fortunately„ the (average) number of photons passing
the beam cross section during T„h is large in normal
laser operation. Hence it becomes possible, by choosing
the exposition time to be shorter than T„h, to fulfill
simultaneously the two essential requirements for obser-
vation of an interference pattern.

(i) The number of photons registered must be large,
since only then will an interference structure become dis-
cernible. (From a few blackened spots one cannot infer
the presence of an interference structure. )

(ii) The two laser beams that are made to interfere must
have a definite phase each (during the observation), since
otherwise the pattern will change its position and thus be-
come wiped out when integrated over the observation
time.

In photoelectric mixing experiments, the high intensity
of the laser beams ensures that many photoelectrons are
produced in the photocathode during any beat period, so
that a well-defined beat note arises. In contrast to the ob-
servation of interference fringes, however, there is no need
to restrict the observation time, since the above-mentioned
frequency drifts give rise only to variations of the beat
frequency.

Actually, it was in the form of beat notes that interfer-
ence between independent laser beams was established, for
the first time, by Javan, Ballik, and Bond (1962). In a
beat experiment, two laser beams are aimed at the cathode
of the same photomultiplier, and the beat signal is the
component of the photocurrent that oscillates at the
d1fference f~~q~~~~y

I v11—vI I
where vI and vII are the

frequencies of the two lasers.
Using two He-Ne lasers in cw operation, Javan, Ballik,

and Bond (1962) clearly observed beat signals, and follow-
ing the long-term variations of the beat frequency, they
obtained detailed information on the frequency charac-
teristics of their lasers, which was, in fact, their primary
goal. Nowadays, the beat technique plays an important
role in the measurement of laser frequencies, both relative
(in comparison to a second laser) and absolute (with
respect to a radiation source linked to the cesium time
standard).

From the classical point of view, the findings of Javan,
Ballik, and Bond (1962) are not surprising. Long before,
it was known from broadcasting that radio waves from
different (possibly very distant) emitters are able to inter-
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fere with one another (to the listener's displeasure),
though, of course, nobody conceived of such waves as en-
sembles of photons, which they nevertheless are. Further,
transient interference effects were demonstrated by Hull
(1949) with independent microwave beams. Qptical mix-
ing had already been observed in thermal light as early as
1955 by Forrester, Gudmundson, and Johnson (1955).
(This experiment will be described in some detail in Sec.
IV.A.)

The pioneering experiment establishing spatial interfer-
ence between independent photons was performed by
Magyar and Mandel (1963). They used two ruby lasers
that emitted sequences of random spikes. The midfre-
quencies of these spikes proved to vary appreciably from
pulse to pulse. (Not only were the optical lengths of the
two ruby crystals different, but also these lengths varied
due to thermal effects. ) Hence, interference fringes could
be observed only occasionally, namely, in those cases
when the midfrequencies of two superposed pulses, vi and

vii, happened to be nearly equal. But even small differ-
ences

i v» —v& i, when they reach the order of the recipro-
cal of the exposition time, considerably reduce the fringe
visibility. Further, the irregular nature of the pulse emis-
sion in the two lasers made the simultaneous occurrence
of two spikes, certainly a prerequisite for interference to
take place, an occasional event.

The authors succeeded in actually observing interfer-
ence fringes with a maximum measured visibility of about
15%, by using the following technique (see Fig. 2): They
directed the light from the two lasers onto the photo-
cathode of an image tube and photographed the image
produced on the output fluorescence screen. This tube
was electronically gated. Normally, it was gated off by a
negative bias voltage applied to the grid. Two monitor
photodetectors feeding into a coincidence circuit caused
the image tube to be gated on by a positive pulse only
when two spikes were emitted in coincidence. By proper-
ly choosing the duration of the gating pulse, the observa-

laser

tion time could be made significantly shorter than the
spike duration, thus ensuring that the phases of the laser
pulses would be constant during the time of exposition.

The general result of the experiments by Javan, Balhk,
and Bond (1962) and Magyar and Mandel (1963) was that
interference between independently produced laser beams
was shown to take place, in full agreement with the classi-
cal theory.

As already mentioned above, the experimenter benefits
to a great extent from the high brightness of laser radia-
tion, which ensures that a large number of photons passes
the beam cross section (which is identical to the coherence
area) during the coherence time. In contrast, with
thermal light, as it is generated by conventional sources,
the number of photons received on a coherence area dur-
ing the coherence time is much less than unity. It is just
this property that renders thermal light incapable of pro-
ducing interference patterns. Actually, this is only a
question of temperature. For source temperatures much
higher than 10 K the photon number in question would
become significantly greater than unity, and interference
effects could be observed in the same manner as with
lasers.

Now the interesting question arises of whether the abil-
ity of laser radiation to interfere, in the sense of interfer-
ence between independent photons, is owing to its high in-
tensity. %'ould it be possible to make two laser beams in-
terfere even when they had been drastically attenuated so
that only a few (or even less than unity, on average) pho-
tons were contained in the coherence volume'? An answer
cannot readily be given. On the one hand, certain experi-
mental problems will arise. It has been emphasized above
that the total number of registered photons must be large,
anyway, for an interference pattern actually to show up.
Hence it will be necessary to make the integration time
much longer than the coherence time in the case of such
low intensities. On the other hand, one might suspect
that one cannot trust the classical predictions in these cir-
cumstances. Instead, one might expect typical quantum-
mechanical effects, associated with the corpuscular nature
of light, to occur.

Let us first clarify the latter issue. To this end, we
have to deal with the basic features of the quantum-
mechanical description of light, especially of laser radia-
tion, and of the photoelectric detection process.

mirror

m 1 I rol !
camera

mage tube

loser

FKs. 2. Schematic diagram of the arrangement used by Magyar
and Mandel (1963) to observe interference fringes produced by
two ruby lasers.

B. Quantum-mechanical description

From a formal point of view, quantization of the elec-
tromagnetic field consists in replacing the (complex) am-
plitudes in the expansion of the positive-frequency part of
the electric field strength in terms of "modes" (usually
linearly polarized monochromatic plane waves) by photon
annihilation operators. Since the field within a volume
over which both the amplitude and the phase of the elec-
tric field strength are constant, at any given time,
represents a system with only two degrees of freedom, any
segment (fixe in space) of a laser beam shorter in length
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than the coherence length cT„~ may be conceived as a
specific excitation of one mode of the radiation field.
(Such a mode will be, in general, not simply a plane wave,
but a wave with a more realistic distribution of the field
amplitude over the beam cross section. ) Thus we may re-
strict our consideration to single-mode fields. Then the
positive-frequency part of the electric field strength, in
operator form, reads

E'+'(r, t)=8'(r)q(t) . (3.1)

Here we have assumed the field to be linearly polarized,
q (t) denotes the photon annihilation operator, and 8'(r) is
an appropriately normalized function that describes the
spatial field distribution in the respective mode.

As indicated by the argument t in Eq. (3.1), we use the
Heisenberg picture. In the absence of interaction between
the field and matter, q (t) evolves according to

q(t) =qe (3.2)

The negative-frequency part of the operator for the elec-
tric field strength is simply the Hermitian conjugate of
(3.1),

E' '(r, t) =8'*(r)q+(t),

where

q+(t) =q+e'"'

(3.3)

(3.4)

is the photon creation operator.
It is convenient to use the Fock states

~

n ) correspond-
ing to definite photon numbers n ( =0, 1,2, . . . ) as a basis
in the Hilbert space of our system. As is well known, the
operators q, q+ act on

~

n ) in the following way:

q ~
n) =v n

~

n —1&, q+
) n) =&n+1~ n+1)

(n =0, 1,2, . . . ) . (3.5)

Now the question arises, how to describe laser radiation in
the quantum-mechanical formalism. An answer is pro-
vided by the following argument: We expect that the
laser field —in a segment of the beam, as specified above,
and for a time interval short compared with the coherence
time- "omes close to what is classically described as a
wave with fixed phase and amplitude [this assumption is,
in fact, thoroughly substantiated by current laser theories,
e.g., Haken (1970) or Paul (1969)];hence we search for the
quantum-mechanical analog of such a classical field, as
the proper representation of (ideal) laser light. The

desired quantum-mechanical states are easily found from
the requirement that the fluctuation of the electric field
strength, averaged over some light periods, be minimal,
for a given mean photon number (Senitzky, 1954,19S8).
Expanded in terms of Fock states, these quantum-
mechanical states take the form

(3.6)

q [a) =a(a), (a ~q+=a'(a ~, (3.7)

from which one observes that a has the meaning of a
complex field amplitude. Since it immediately follows
from Eqs. (3.7) that (a ~q+q ) a) = ~a

~

2, the norrnaliza-
tion is such that the square of the modulus of a equals
the mean photon number.

Now contact must be made with measurement. The
detection process, quite generally, utilizes the photoelec-
tric effect. As has been shown by Glauber (1965), what a
(single) detector measures is the field intensity
(E' '(r, t)E'+'(r, t)), where the angular brackets symbol-
ize the quantum-mechanical expectation value. To speak
more precisely, the counting rate R, i.e., the number of
photons registered per unit time by a photodetector locat-
ed at a point r, is given by

R =constX (E' '(r, t)E'+'(r, t) ) . (3.8)

Intensity m.easurements, however, do not exhaust the
potential of photodetectors. Photodetectors also make it
possible to perform coincidence counting experiments,
which have proven to be a valuable means of physical in-
vestigation. We are mainly interested in the case of two
detectors located at different points ri and r2. To be
counted are those events for which the first detector regis-
ters a photon and the second detector does so ~ seconds
later. According to Glauber (1965), the (delayed) coin-
cidence counting rate K(v) is proportional to the second-
order correlation function for the field G '(qr t;ir tz+r)
[the quantum-mechanical pendant to the classical intensi-
ty correlation ((I(ri, t)I (r2, t +~) ))]:

where a is any complex number.
These states have been named coherent states of the

field, or Glauber states. [They were originally introduced
by Schrodinger (1926).]

Making use of Eqs. (3.S), one easily verifies that the
following simple relations hold:

&(~)=const && G'„'(r„t;r„t+7),
3

G,"„'(r„t;r„t+&)= g (E' —'(r„t)E~ —~(r, t+~)E~+~(r, t+ )E(+)(
p, cT= I

(3.9)

Since it wi11 always become obvious from the context whether we are dealing with quantized or classica1 quantities, there is no need

for indicating this difference in the notation.
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where the subscripts p and o. have been used to indicate
Cartesian components. (Note that under stationary condi-
tions the right-hand side of this equation does not depend
on t.)

In both Eqs. (3.8) and (3.9), q and q+ are arranged in
normal order, and this holds true for all quantities (field
correlations of any order) that can be measured with the
help of photodetectors. It is due to this normal ordering
that no vacuum effects (like zero-point fluctuations of the
electromagnetic field) come into play. In particular, this
means that it is ensured that a photodetector will never
respond when the field is in the vacuum state

~

0).
The normal ordering in question has an interesting for™

mal implication too. When calculating any field correla-
tion for a Glauber state, we can utilize Eqs. (3.7), with the
result that the quantum-mechanical expectation value is
simply evaluated by replacing the operators q and q+ by
a and a*, respectively, which makes it identical to the
corresponding classical value. This complete equivalence
between the quantum-mechanical and the classical
description actually holds true for a Inuch wider class of
states, namely, those whose density operators p allow for
a so-called P representation (Glauber, 1963),

p= JP(a)~a)(a~d a (3.10)

with a non-negative function P(a). Here, the integration
extends over the whole complex a plane. It is easy to see
that the quantum-mechanical expectation value of any
normally ordered product of photon creation and annihi-
lation operators, with respect to p, equals the correspond-
ing classical average over an ensemble described by the
distribution function P (a). The extension of this
equivalence theorem to the multimode case is straightfor-
ward.

It is of particular interest that thermal radiation falls
into the category of fields that have a (regular) P repre-
sentation (Glauber, 1963), so that the classical description
proves to be perfectly correct in this relevant case.

From what has been said above it follows that we are
indeed entitled to discuss interference experiments with
laser beams [assuming them to be in Glauber states in
times t (T, h or, more generally, in states of the form
(3.10) with P(a) &0] in purely classical terms. Hence de-
viations from the classical predictions —these will be
specific quantum effects associated with the corpuscular
nature of light an be expected to occur only for those
states of the field that do not possess a P representation,
with a non-negative P function. In Sec. IV.E it will be-
come clear that states of this type are, nevertheless, of
considerable physical interest.

Let us now return to the question of what will happen
when we drastically attenuate the laser beams, e.g., by
means of conventional absorbers. From the classical
theory one expects that such a damping process will
transform a Cilauber state into another Glauber state—of
course, with a parameter o; that has a smaller modulus.
This simple picture, in fact, proves to be correct in princi-
ple (Brunner, Paul, and Richter, 1964,1965; Paul,

Brunner, and Richter, 1966) for arbitrarily strong at-
tenuation. Hence the classical description applies equally
well to attenuated laser beams [cf. Paul, Brunner, and
Richter (1963)], and since classical theory predicts in-
terference to be independent of the absolute intensity level
(only the relative intensities in the interfering beams are
relevant), we arrive at the conclusion that interference be-
tween independent laser beams should take place, with
unchanged visibility, irrespective of how strongly the
beams might be attenuated (all of them in the same
manner, of course). Hence this kind of interference is
essentially a classical phenomenon, even at a microscopic
intensity level, that is, even for photon numbers, per
coherence volume, that are comparable with, or even
smaller than, unity on average.

This result might, in fact, appear surprising to theoreti-
cians, since it seemingly contradicts the famous uncer-
tainty relation, first derived by Dirac (1927) [see also
Heitler (1954)], for the phase @ and the photon number
iV,

AXA4& 1 . (3.11)

C. Attenuated beams

%"hile the theoretical results presented in the preceding
section leave little room for doubt about the ability of
low-intensity laser beams to interfere in principle, it is
still a different thing to achieve such interference in prac-
tice. In fact, one might question the feasibility of such an
experiment, since the physical situation seems to be no
better than in the case of thermal light mentioned in Sec.
III.A. Actually, when the (average) number of photons
per coherence volume N is of order 1, or even smaller, no
interference pattern can be produced during an exposition
time shorter than T„h, simply because of the lack of pho-

For a Glauber state, bN equals N ', where N=
~
a

~
is

the mean photon number, and hence for N »1 this in-
equality is consistent with the existence of a well-defined
phase. However, when N decreases, Eq. (3.11) predicts
that the phase uncertainty will grow. Finally, when N
goes down to values smaller than unity, the phase will be-
come almost completely uncertain.

Since the relative phase between two interfering laser
beams determines the position of the interference fringes,
and the individual phases will fluctuate independently,
one thus arrives at the conclusion that the interference
pattern should be progressively wiped out as the intensity
decreases, its visibility being completely lost for N « l.

Actually, this argument fails, the reason being that the
phase, in the sense used by Dirac, is affected by the vacu-
um fiuctuations of the field (in fact, the latter become
dominant for N &1), whereas a photodetector does not
take notice of any vacuum effect, as I mentioned above.
In other words, it is not Dirac's phase that is relevant for
interference experiments with lasers, but the phase of the
complex number a that characterizes the Glauber state
representing a laser beam even after strong attenuation.
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tons. However, when the observation extends over a
longer time interval, the interference pattern will be wiped
out as a consequence of the random changes undergone by
the phases in the two beams.

There is, however, a fundamental difference between at-
tenuated laser light and thermal light. In the former case
we actually start from a high-intensity field (N »1), and
this circumstance can be utilized for appropriately con-
trolling the conditions in the low-intensity interference ex-
periment. In fact, what we need in order to perform the
latter is information on the phases of the beams (strictly
speaking, only their difference is of interest), which would
enable us to choose proper periods for exposition, so that
the phase difference would always have the same value in
every trial. (In the language of quantum mechanics, we
thus would prepare an ensemble of two-beam states of the
radiation field corresponding to a fixed phase difference. )
En those circumstances, the integration time could be
made arbitrarily long, so that a number of photons could
be registered, in summa, that would be sufficiently large
for the desired interference pattern to show up. Actually,
the required phase information can be obtained with the
following procedure, as proposed by Paul, Brunner, and
Richter (1965) [cf. also Paul (1966)]. Two mirrors with
very low reflectivity spht the intense laser beams (see Fig.
3), thus producing the two weak beams whose interference
is to be observed. The (still intense) beams that have
passed through the mirrors are made to interfere, and
from comparison of the position of the interference pat-
tern with that of a reference pattern, a signal is obtained
for controlling the operation of a shutter. The shutter is
placed before the observation screen (a photographic
plate} and is opened only when the high-intensity interfer-
ence pattern has the prescribed position.

Following this proposal, Radloff (1971) actually estab-
lished interference between strongly attenuated laser
beams originating from two independently operated He-
Ne lasers. To ensure high mechanical stability of the
laser resonators, he employed a cylindrical quartz block
with two slits for the laser tubes and two boreholes to
transmit the laser light. Attached to this block were the
mirrors of both laser resonators (with inclusion, on one

end, of piezoceramics). The shutter consisted of two
crossed Gian-Thompson prisms with a KDP crystal be-
tween them. The control signal for the operation of the
shutter was obtained from observation, with the help of a
photomultiplier, of the beat note produced by the two in-
tense beams. Whenever the beat frequency fell within the
range from 3 to 70 kHz, the maxima of the photocurrent
were amplified, and the rectangular pulses thus generated
served to open the shutter. Since the relative phase be-
tween the two laser beams always has the same value
when the ac.photocurrent reaches a maximum, the shutter
works in the desired way.

In the experiment, the average incident photon flux was
10 photons/sec, and the shutter was opened in periods of
10 ~- to 10 -sec duration. Hence the number of pho-
tons passing through the shutter and falling onto the pho-
tographic plate during one period ranged from 1 to 10
photons, and was obviously too small for an interference
pattern to be formed in a single trial. However, during a
long exposition time (up to 30 min), all the photons reach-
ing the plate collectively produced a clearly visible in-
terference pattern.

I should like to add a remark that is of more theoretical
interest. On principle, it is not necessary to restrict the
exposition to time intervals corresponding to a given rela-
tive phase between the two beams. Instead, one might
proceed as follows: One measures over an extended
period the coordinates of all the spots in a photosensitive
layer where photoemission processes have taken place, to-
gether with the respective times of their occurrence.
These data are stored in memory; they, of course, do not
indicate any interference pattern to be present. However,
when a second, independent observation is made on the
intense laser beams, thereby registering their relative
phase as a function of time, this information can be uti-
lized to construct an interference pattern a posteriori by
selecting from all the accumulated data those correspond-
ing to times in which the relative phase has a prescribed
value.

It seems noteworthy that those two independent mea-
surements need not be carried out in coincidence. A de-
finite time delay (brought about, for example, by placing
one measuring device near the two lasers, while locating
the other at a large distance) does not matter, since the
phases in the intense beams are certainly macroscopic
quantities. Hence measuring them means only taking no-
tice of them (without in any way disturbing them, as mea-
surements norinally would do on the microscopic level),
and since they do not change during propagation in space,
one can safely infer their values at a given time (at a fixed
point) from delayed, as well as advanced, measurements.

shutter
D. Anticorrelations

FIG. 3. Principal scheme of a setup for the observation of in-
terference between two strongly attenuated laser beams.

Actually, experimental evidence of interference between

attenuated laser beams was provided four years prior to
Radloff's experiment by Pfleegor and Mandel (1967),
though in a less direct way. They did not observe a visi-
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ble interference pattern, but rather Ineasured intensity
correlations in the superposition field from two indepen-
dent lasers. Since the classical description applies to laser
fields even when they are strongly damped (see Sec. III.B),
we can use the classical formula (2.5) to provide the
theoretical background for this experiment.

Equation (2.5) describes intensity correlations in a field
produced by superposition of two monochromatic plane
waves with randomly (and independently) distributed
phases. This is just the situation we envisage in the laser
case when a continuous observation over a long period is
made. As has been emphasized in Sec. III.C, one can
conclude from the variation of G' '(ri, t;r2, t)
=((I(ri, t)I(r2, t))) with the difference r2 —ri that in-
terference has taken place.

Now, the correlation function 6' ' can be measured
with the following procedure: One determines the num-
ber of photons n i and n2, respectively, that are registered
by two individual photomultipliers located at r~ and x2,
during a time interval of length T; one then multiplies n ~

and n2 and repeats the experiment many times, so that an
average n inz can be formed. This average equals, up to a
factor that essentially depends on the sensitivity of the
detectors, the correlation function G' '.

Obviously, in this experiment, we must ensure that the
period of exposition T is shorter than the coherence time
T„h, since, according to the definition of the intensity
correlation (2.5), the two intensities to be multiplied corre-
spond to fixed phases, and it is only afterwards that
averaging is performed.

As has already been mentioned in Sec. II.C, the devia-
tions dl(r, t) [see Eq. (2.13)] of the intensities from their
mean values display, via their correlation (2.16), the varia-
tion of G' '(r„t;r2, t) in a still more pronounced form.
Experimentally, the quaritity (2.16) is determined (up to a
constant factor) by evaluating, from the data for n, and

n2, the average dnidnz, where dn„=n n(v=—1,2). It
is easily proved that the following simple relation con-
nects 6n $ An 2 and n $ n 2 '.

hn)5n2 —n)n2 —n]n2 . (3.12)

Equation (2.16) predicts the correlation (3.12) to vary as
cos[dk(zz —zi)]. This means it is an oscillating function
of zz —zi that, according to what has been said in Sec.
II.C, reaches maximum when z2 —z& is an integer multi-
ple of the fringe spacing, while it has its minimum values
when z2 —zi equals an odd number of half-fringe spac-
ings. Since the minima are actually negative, one is led to
speak of anticorrelations being present in that case.

These anticorrelations have actually been measured by
Pfleegor and Mandel (1967,1968) with the technique
described above. To meet the above-mentioned require-
ment T « T„h, they restricted the observation to periods
of 20-psec duration, during which the frequency differ-
ence of the two single-mode lasers fell below 50 kHz. To
this end, they registered the frequency difference in the
form of a beat note and passed it to a 20-psec gate genera-
tor via a 50-kHz low-pass filter. For the observation of

the interference effect a special optical arrangement was
used. The light from the two lasers was made to fall
upon a stack of thin glass plates, each of them about a
half-fringe spacing thick. The plates were cut and ar-
ranged so that light falling upon the 1st, 3rd, 5th, etc. ,
plate was fed to one photomultiplier, while the 2nd, 4th,
6th, etc., plate directed incident light to the other pho-
tomultiplier. The mean number of photons, ni and n2, ,
counted in one trial, were each about 5, at quantum effi-
ciencies of the photomultipliers of about 7%%uo. The num-
ber of illuminated plates was about 5.

By varying the angle between the two laser beams, the
authors changed dk, and hence the fringe spacing [see
Eq. (2.10)]. In accordance with the prediction (2.16), they
found the observed anticorrelations to be greatest when
the thickness of the glass plates coincided with the half-
fringe spacing. Moreover-, their findings proved to be in
reasonable quantitative agreement with the results of a de-
tailed calculation, within the rather low statistical accura-
cy of the experiment.

E. Discussion

It becomes evident from the above description of the
Pfleegor and Mandel experiment that such an experiment
is feasible only at not too low intensities. To be more pre-
cise, the total number of photons X,„,~, on average, strik-
ing the photocathodes of both detectors in one trial must
be larger than one (practically, the requirement is
Ã«» »1 because of the low quantum efficiencies of the
photomultipliers), since otherwise the individual contribu-
tions n in@, from a sequence of trials, to the average n in2
will vanish in the overwhelming majority of cases. Obvi-
ously, only those trials contribute to n&n2 in which each
detector registers (at least) one photon. However, the
probability for such an event to happen goes to zero as p,
for X,„»—+0, where p=(p/2)N«, i (p being the detector
efficiency) is the probability for an individual detector to
register a photon in one trial. Actually, the interference
observed in the Pfleegor and Mandel experiment took
place between groups of about 70 photons, respectively.

In Radloff s experiment, in contrast, it is only required
that single photons be registered from time to time. Since
those events occur with probability p'=p'X, „,i, where p'
is the detection sensitivity of the photoplate, Radloff's
scheme proves to be superior to that of Pfleegor and Man-
del at very low intensities. Apart from the fact that it
provides an ad oculos demonstration of interference, it is
practicable at an intensity level so low that one can speak
of interference between only two photons, one from the
first and one from the second laser.

%"hile such a situation would correspond to Nt„,~-2,
the theoretical analysis leaves no doubt that interference
might be observed equally well for N,„»(1 or even for
X,„,~ &&1. Then it would be very unlikely that, in one
trial, a photon would be present in each of the laser
beams. In the majority of cases, both beams would prove
to be "empty, " so that nothing would happen. The events
that collectively make up the ultimate interference pattern
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are mainly those in which only one photon is present. If
we naively attribute this photon to one of the beams (as-
suming it to have been emitted by either the first or the
second laser), we find the situation to be paradoxical: In-
terference takes place not between two photons, but be-
tween one photon and "nothing. "

This paradox can be resolved only in the conceptual
frame of quantum mechanics. The above arguinent is
based, in fact, on an erroneous (naive) photon picture in
which photons are conceived to be something like classi-
cal particles. According to quantum mechanics, however,
the photon number in a Glauber state is intrinsically in-
definite; hence one is not justified in considering the num-
ber of photons in each beam (during one trial) to be a de-
finite quantity, in the sense of classical reality. Formally,
it is just this uncertainty in the photon number that brings
into play the wave picture. The proper description of in-
terference between independent photons will be as follows.
What interferes with one another are waves, and when
one photon is registered in Radloff's setup, one cannot
say, on principle, from which laser it has come. What ac-
tually happens in that detection process is that an energy
packet hv is taken from the superposition field to which
both lasers contribute equally, and hence it is only natural
that this photon bears information on both laser fields
that becomes manifest in the ultimate interference pat-
tem.

IV. INTERFERENCE BETWEEN
SPONTANEOUSLY EMITTED PHOTONS

A. Phatoelectric mixing

The advent of the laser made interference between in-
dependent photons easy to observe, at least at high inten-
sities. Nevertheless, it would be false to associate this
type of interference only with specific states of the radia-
tion field, generated, as is the case with laser beams, in a
nonconventional way. Actually, the pioneering experi-
ment in this field was performed before the laser era by
Forrester, Gudmundson, and Johnson (1955), who suc-
ceeded in observing beats between two Zeeman com-
ponents in the light from a thermal source. It is to their
credit that they became discouraged neither by serious ex-
perimental difficulties nor by erroneous theoretical argu-
ments that denied the observability of the beating
phenomenon they wanted to demonstrate.

The light source employed by Forrester, Gudmundson,
and Johnson (1955) was a microwave-excited electrodeless
discharge in Hg. For measurement, the line at 546.1

nm, split by an applied magnetic field into different Zee-
man components, was used. The authors intended to ob-
serve optical mixing between two o components of this
spectrum. To avoid overlapping of components (their
linewidth being about 10 Hz), the difference in their mid-
frequencies was made as large as 10' Hz, via Zeeman

splitting. Since the two lines originate from two different
sets of atoms, they are in fact incoherent.

For measurement of the beat signal, the light was
focused onto a photosurface, and the ejected electrons
were fed, after acceleration, into a resonant microwave
cavity to which they delivered energy.

Such a measurement becomes practicable only when at
least a few electrons are emitted during every period of
the beat note, i.e., within 10 ' sec. This requires the
number of photons striking the photocathode during that
time to be large too. The light source was bright enough
so that this condition could be fulfilled. However, the il-
luminated area of the photocathode covered a huge num-
ber of coherence areas in which the phases of the light
waves were constant but differing, in a random manner,
from area to area. As a result, the signals from all these
areas added with random phases. This made the ac
current from the entire cathode extremely small compared
to the dc current responsible for shot noise, so that the
latter provided the basic obstacle to the observation. In
fact, the authors estimated the signal-to-noise ratio to be
about 10

They overcame this difficulty by making use of a
modulation technique. They modulated the intensity of
the signal by passing the light from the source through a
rotating half-wave plate. This caused the plane of polari-
zation to rotate twice as rapidly as the plate. Then the
light was sent though a Polaroid, which transformed the
rotation of the plane of polarization, for any linearly po-
larized beam, into an intensity modulation. In this
manner the beat signal originating from two o com-
ponents of the Zeeman-split line was modulated, while the
total light intensity, and hence the shot noise, remained
constant (after an initial polarization of the light source,
in the absence of the magnetic field, had been compensat-
ed for). The modulated signal, after detection, was passed
through a very-narrow-band (phase-selective) amplifier,
before registering on the indicator.

The authors actually measured a beat signal and re-
garded its good agreement with the calculated signal-to-
noise ratio as a confirmation of their premise that pho-
toelectric emission is proportional to instantaneous total
light intensity. From their data they drew, moreover, the

important conclusion that any delay between photon ab-
sorption and electron emission must be significantly less
than 10 ' sec, since a decay time comparable with, or
longer than, the beat period would considerably decrease
the signal;

B. intensity correlations
in thermal light

While Forrester, Gudmundson, and Johnson (1955)
demonstrated the ability of photodetectors to follow
short-term variations in light intensity, Brown and Twiss
(1956a,1956b) were the first to study systematically inten-
sity fluctuations in thermal fields, their aim being a rather
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FIG. 4. Schematic diagram of the stellar interferometer
developed by Brown and Twiss (1956b).

practical one. What they had in mind, and did in fact
achieve, was an improvement in the measurement of stel-
lar diameters.

Their basic idea was to replace in Michelson's stellar
interferometer (Michelson, 1890,1920) the two mirrors
onto which the light from the star is falling, by two large
reflectors which focus the incoming light onto two similar
photomultipliers (see Fig. 4). While Michelson observed
the visibility of a (conventional) interference pattern, as a
function of the distance between the two mirrors, Brown
and Twiss (1956b) measured correlations in the photo-
currents of the two detectors. To this end, the photo-
currents, after having each passed a small-band amplifier,
were multiplied together, and the temporal average over
this product was taken as the signal.

What they thus observed was, up to a constant factor
depending on the efficiencies of the detectors, the intensi-
ty correlation function G' '(r&, t;r2, t) = ((1(r~,t)1(r2, t) ))
(which is independent of t in stationary conditions). It
should be noted that the classical description is in fact
adequate in the case of thermal light, as has been men-
tioned in Sec. III.B.

Brown and Twiss (1956b) found the interesting result
that 6' ' exhibited a maximum at r~ ——r2. With growing
distance between the reflectors

~
r2 —r& ~, G' ' decreased

until a definite constant level was attained. This behavior
of the intensity correlation function closely parallels the
decrease of fringe visibility, as observed in Michelson s in-
terferometer. What can be measured in both cases is a
critical distance

~
r2 —r& ~,„„given by either the width of

the maximum of 6' ' or the mirror distance for which
the interference pattern becomes invisible. This quantity
equals the transverse coherence length of stellar light on
the Earth's surface, from which the (seeming) stellar di-
ameter can easily be inferred. However, the stellar inten-
sity interferometer, as it has been called by Brown and
Twiss (1956b), has two important advantages: Atmo-
spheric scintillations do not disturb the measurement, and
the reflector distance can be made very large, since no
mechanical connection between the reflectors is required.

We are interested not so much in the practical aspects
of the stellar intensity interferometer as in the conclusions
that can be drawn from the observations on the charac-
teristics of thermal light. From the classical point of
view, the experimental results are easily explained in the
following picture: The atoms on the star's surface emit,
independently from each other and with random phases,
elementary wave trains whose superposition (on Earth) is
the subject of investigation. This superposition field un-

dergoes fluctuations in both its phase and its amplitude.
At a given time, both quantities are approximately con-
stant over a coherence area; hence the detector outputs are
correlated when their positions fall in the same area.
Otherwise the photocurrents fluctuate independently. (In
practice, the transverse coherence length is a rather large
quantity, ranging from meters to hundreds of meters and
more. )

Since superposition of a large number of individual
waves is certainly an interference phenomenon, the effect
measured by Brown and Twiss (1956b) can actually be re-

garded as an indication of interference having taken place
between independently emitted elementary wave trains,
i.e., photons.

However, things are hard to understand in a naive pho-
ton picture. The paradoxical character of the situation
becomes still more obvious when the measurement is per-
formed with photodetectors that count individual pho-
tons, the signal now being the coincidence counting rate.
The maximum exhibited by the latter for r~ ——r2 then
leads us to ask the following question. When photons are
emitted independently by various atoms on the star's sur-
face, what could bring about a tendency for any two of
them to arrive at a short {transverse) distance with an
enhanced probability? The origin of such a correlation
remains in fact obscure when we tacitly assume that what
we count as a photon can be identified with what is emit-
ted by a particular (though unknown) atom on the star's
surface. Actually, this assumption cannot be upheld;
photons are not individuals whose "course of life" may be
followed, at least on principle, from "birth" to "death. "
As has been pointed out already at the end of Sec. III.E,
what is registered as a photon is an energy packet hv tak-
en from the superposition field, and this explains why it is
possible to get information on the extension of the star's
surface by counting sirigle photons.

To summarize, we can say that the development of
photoelectric detectors made it possible to measure the in-
tensity fluctuations occurring in thermal light —not only
in the form of the spatial intensity correlations considered
thus far, but also in the form of correlations between the
arrival times of successive photons, as was first done by
Rebka and Pound (1957)—thus essentially confirming the
classical ideas about the statistical features of thermal
light.

While in those experiments a huge number of elementa-
ry emitters was involved, in the following we shall dis-
cuss, from the theoretical point of view, the simplest and
hence most instructive case, namely, that of precisely two
emitting atoms.
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C. The two-atom case

a =0, a~ =0, aa +a a=1.f2= (4.3)

Instead of the classical equation (2.21) we now have to
write

(+) f
r —rt.

fE + (r, t)= f(r —rt)at t
C

fr —ru f+ f(r —lu)an (4.4)

where the lowering operators ai and aqua commute. It
should be noted that the classical factors exp( —i4t) and
exp( —iC&n) in Eq. (2.21) are already comprised in the
lowering operators. In fact, it immediately follows from
Eq. (4.1) that the expectation values for a& and au vanish
in the initial state, ' where both atoms are excited. Later
on we shall show that this remains so during the whole
evolution [see Eq. (4.6)j. This circumstance indicates that
the phases of the individual dipole oscillations are ran-
domly distributed, which, in turn, makes the expectation
values for 8 ' and E +' vanish.

Together with its Hermitian conjugate, Eq. (4.4) forms
the basis for a quantum-mechanical calculation of intensi-
ty correlations. Thus the quantum-mechanical treatment
parallels the classical one presented in Sec. II.C. As a re-

We have already calculated the intensity correlation for
two Hertzian oscillators in Sec. II.C. The classical
description, however, turns out to fail when the emitters
are identified with excited atoms. In fact, the quantum-
mechanical state of the field emitted by one or two atoms
cannot be described by a density operator that has a (regu-
lar) P representation. Hence the equivalence between
classical and quantum-mechanical descriptions stated in
Sec. III.B, no longer exists, and the two theories must be
expected to yield different predictions. The discrepancy
is, in fact, significant, as will become obvious from the
subsequent analysis.

Let us evaluate the quantum-mechanical expression for
the intensity correlation function. Our starting point is
again Eq. (2.19). "Translating" it into the quantum-
mechanical language means to interpret the amphtude of
the oscillator as an appropriate operator (which, in turn,
implies the operator character of E'+' and E' '). We as-
sume the operators to be time dependent, i.e., we use the
Heisenberg picture.

%e idealize the atom by a two-level system. Then the
operator a is a lowering operator: it brings the atom from
its upper level

f
2& to its lower level

f
1&,

a(0) f2}=
f

1& . (4.1)

Correspondingly, the Hermitian conjugate of a, a, is a
raising operator describing the reverse transition,

at(0)
f
1&= f2& . (4.2)

It is well known that the operators a,a ~ obey the ariticom-
mutation relations

suit of the aforementioned vanishing of (E' '& and
(E'+'&, the mean intensity is constant in space. Hence
the presence of interference effects can be inferred from
higher-order field correlations only. As in Sec. II.C, we
shall study intensity correlations that are described by the
second-order correlation function

dt
(a & —( t~2$ I /2)(a & (4.6)

Here co2~ is the level distance, in units of A, and I the re-
ciprocal lifetime of the upper level with respect to spon-
taneous emission. (The lower level is assumed to be the
ground state. ) Obviously, Eq. (4.6) confirms our assertion

(a(t')&=(a (t')&=0 for t'&0. (4 7)

Making use of the above-mentioned factorizibility, one
immediately concludes from Eq. (4.7) that any expecta-
tion value to which one of the atoms contributes only
through one operator, either a or a~, vanishes too, e.g.,

Gqu (rl»t»r2»t)(2)

3

(Ep (r), t)E (r2, t)&'+'(r2, t)Ep+'(r, ,t) & .
p~0'= 1

(4.5)

Because of the normal ordering of the field operators in
this expression, we have to deal with expectation values
for normally ordered products of (altogether. four) lower-
ing and raising operators (the latter standing to the left of
the former).

Generally, we assume that the atoms emit independent-
ly from one another. This is an approximation, since they
are coupled to the same radiation field. However, their
mutual influence can be neglected, provided they are
separated by a distance that is large compared to the
wavelength of the radiation. [In the opposite case, our as-
sumption is, in fact, not justified. Near-zone effects have
to be properly taken into account which, however, do not
affect the equal-time correlation function (4.5), as has
been shown by Th. Richter (1979). See also Sec. IV.F.)
The approximation in question enables us to factorize
products of operators associated with different atoms.

Let us first consider expectation values that vanish in
the classical description. It is readily seen that they do
the same in the quantum-mechanical formalism.

We have already stated that the expectation values for
a and a vanish at t=0. This also holds true during the
emission process. If it did not, the atomic dipole moment
[represented by the operator d(a +a )] would acquire a
finite value, thus indicating some preference for certain
values of the dipole phase, and this would be in contrast
to the intrinsically random nature of the spontaneous
emission process. A formal argument is based on the
equation of motion for ( a & which follows from a
quantum-mechanical analysis that takes proper account
of radiation damping [see Mollow and Miller (1969); cf.
also Mollow (1969)]:
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& ai(II)ai(t2)ai(I3)aii(4) &

= &&i(II)&i(4)&i(I3)&&&II(t4) & =0 . (4.8)

Both Eqs. (4.7) and (4.8) are in perfect agreement with the
classical description.

A similar argument leads to the result

& ai(ti)ai(tz)aii(I3&aii(4»

= &&i(II )&i(t2) &&aII(t3)aii(t4) & =0 . (4.9)

In fact, terms of the type &at(t)at(t') & or &a(r)a(t') & are
equal to zero F.or I =I', this is a direct consequence of
the commutation relations (4.3), and for t~t' it can be
readily proved with the help of the so-called quantum re-
gression theorem, as will be shown below. Obviously, the
quantum-mechanical prediction (4.9) agrees with the cor-
responding classical one.

The relevant contributions to ihe intensity correlation
function (4.5& are thus of the type [cf. Eq. (2.25)]

I( 1) II( 2& II( 3)+I(I4) &

(ii& &~i(II)ui(I2)~I(r2)~I(tl & &

Terms of the form (i) can also be factorized,

& ~ I (I I )u n(rz)~II(I3)~I(r4) &

I ( I & I( 4) & &uii( 2)~II(I3) & (4.10)

in accordance with the classical description.
The equivalence between the classical and the

quantum-mechanical theory, however, breaks down in the
case of terms like (ii). In fact, the corresponding classical
expression reads

) ai(tI)
~ ~

ai(t2) (, which is of the
same order of magnitude as the remaining terms in Eq.
(2.25), while quantum theory predicts the expectation
value (ii) to vanish. For tI t2, this——follows immediately
from the anticommutation relations (4.3), and for ti&tz a
proof can be given that utilizes the quantum regression
theorem (see below).

Apart from any formal argument, however, the vanish-
ing of the expectation value (ii) is readily understood on
general physical grounds. Actually, it is simply dictated
by the energy conservation law: The term (ii) determines
the intensity correlation function for the field emitted by
just one atom, and since the intensity correlation gives us,
apart from a factor, the probability of finding two pho-
tons, normally each at a different position, a nonvanish-'
ing value of (ii) would indicate the possibility of detecting
two photons when only one is emitted.

It should be emphasized that the failure of the classical
description in ihe present case is not owing to its inability
to account for photons, in the sense of wave packets that
contain the energy hv, but rather its inability to describe
properly the photoelectric effect, which is intimately con-
nected with the corpuscular aspect of light. In fact, the
classical theory of photoelectiic detection is faced with a
nonresolvable problem: If it correctly accounted for the & M(r) &

= y p„(t)&M„(0)& (t & 0), (4.11)

energy conservation law, no photodetector placed in the
far field could respond at all to a dipole field with total
energy hv, due to the lack of available energy resulting
from the "dilution" of the electromagnetic energy in the
course of propagation. The classical theory circumvents
this difficulty, disregarding the energy conservation law,
by the assumption that the probability for a detector to
count a photon is proportional to the instantaneous inten-
sity. This approach is certainly justified when the energy
of the field is large compared to hv. Moreover, it also
proves to be correct for coherent waves (i.e., waves with
definite phases and amplitudes) or, more generally, for
fields that can be described by statistical mixtures of
coherent waves in the sense of Glauber's I' repre-
sentation even at (arbitrarily) low intensities, since the
classical predictions are identical to the quantum-
mechanical ones in this case, as has been pointed out in
Sec. III.B.

Quantum mechanics actually explains why there is no
confiict with the energy conservation law: The number of
photons in a coherent state, in the quantum-mechanical
description, is uncertain; even at arbitrarily low intensities
there is a nonvanishing probability of finding one, two, or
even more photons [according to Eq. (3.6), this probabili-
ty follows a Poisson distribution], so that, in principle, the
available energy is unlimited.

However, the classical approach necessarily fails to give
results that satisfy the energy conservation law when the
field under consideration contains a definite (small) num-
ber of photons that is less than the number of detectors
used for observation. Then the classical theory predicts
that events in which all the detectors respond to the field
(i.e., register a photon each) will occur with a nonzero
probability, which is certainly in contrast to the energy
conservation law, and hence erroneous.

It is just such a situation that we are dealing with in the
discussion of the expectation value (ii). Therefore the dis-
tinct difference between this value and its classical analog
is of fundamental importance. It reflects the inability of
the classical theory, based entirely on the wave concept, to
account properly for the particle aspect of light.

Since the term (ii) (and the corresponding term with the
subscript I replaced by II) enters the expression for the in-
tensity correlation function in the case of two emitting
atoms, the classical and the quantum theory will differ in
the prediction of this correlation too This disc.repancy
will then show up as a specific quantum effect.

%'hat we still have to do is to evaluate expectation
values of the type &ai(t)ai(t') & [see Eq. (4.10)]. To this
end, we make use of the quantum regression theorem
proved by Lax (1968) for Markovian systems, which en-
ables us to express any two-time correlation function
through single-time expectation values. Its general for-
mulation is as follows. If M is a member (or a linear
combination) of a complete set of Markovian system
operators M„, then the time evolution of the expectation
value of M can be written as

Rev. Mod. Phys. , Vol. 58, No. 1, January )S86



H. Paul: Interference between independent photons 225

and the mean of a two-time operator L (t)M(t+w)N(t),
where I. and % are any system operators, is given by

( L (t)M (t + r)N (t) ) = g 13„(~)(L (t)M„(t)N (t) )

(([a(t+~)e ' ]*a(t)e ' ))

=a '(t +r)a (t)

=exp itoz~+ —r
~
a (t) ~, (4.16)

r
2

(v &0) . (4.12)

In the present case, we start from Eq. (4.6), which is

readily integrated to yield

I(a(t))=exp — ico2&+ —t (a(0)) .
2

(4.13)

Applying the regression theorem, we then find

(at(t)a(t 1~))=exp —icoq~+ —r (a (t)a(t})r
2

(~ & 0), (4.14)

and in a similar way we obtain

( a (t +~)a (t) ) =exp icoz&+ —~ (at(t)a (t) )
r
2

(v &0) . (4.15)

It is interesting to note that these results are identical to
the corresponding classical ones. In fact, according to
Eqs. (2.21) and (2.18), the classical analog of the correla-
tion (4.15), for instance, reads

t

and the values of
~

a(t)
~

and (a (t)a(t)) are identical:
they are both equal to exp( —I t), as follows from Eq.
(2.18) and the quantum-mechanical equation of motion

d
dt

(ata) = —I (ata)

for the initial condition (a (0)a (0) ) = 1. [Since the
operator a~a characterizes the occupation of the upper
atomic level, Eq. (4.17) describes the exponential decay of
the excited atomic state. It is derived in the same manner
as Eq. (4.6).]

Finally, we learn from the regression theorem
that two-time correlation functions (a (t +r)a (t) ),
(a (t+r)a (t)) differ from their values at v=0 only by a
factor, and hence vanish by virtue of Eqs. (4.3). The same
argument also applies to the expectation value (ii). [Here,
the proof starts from Eq. (4.17).]

Summing up our results, we can state that the contribu-
tions to the intensity correlation function are identical in
the classical and the quantum-mechanical description,
with one important exception: The terms of the form (ii)
vanish in the quantum-mechanical formalism, whereas
they are of the same order of magnitude as the remaining
contributions in the classical theory.

-Hence the quantum-mechanical expression for the in-
tensity correlation is immediately obtained from the clas-
sical formula (2.25) by dropping the form (ii) terms. We
thus arrive at the result

Gq„'(r~, t;r2, t)=f&tfz»
~
ac(T&t)an(T2»}

~
+ zrfr»

~
at(Tzs)a»(T&n)

~

+(f iaaf &n)( fznf2i)[a P Tn)at(T2i)ari(Tzn)a»(Tin)+c c l (4.18)

where the a's are the classical variables (2.18).
In the approximations (2.28) and (2.29},we have to sub-

tract 2f"a from the classical expression (2.30), the result
being

Gq„'(r~, t, r2, t) =2f a I 1+cos[k (r2t —r2»+r in —r it)] l .

(4.19)

Specializing to the configuration represented by Fig. 1, we

have to replace Eq. (2.35) by

G'„'(r&, t;r2, t) =2f a [1+cos[(kz—k~)(rn —rq)] I .

(4.20)

The difference between Eqs. (2.30) and (4.19), or between

Eqs. (2.35) and (4.20), is, in fact, of great physical
relevance. While the possible minimum value of G' ' is
one-half of the average value in the classical description,
it is zero in the quantum-mechanical formalism.

Physically, the quantum-mechanical result means that
two detectors can be placed at positions such that they
will never both respond. In the configuration illustrated

by Fig. 1 this happens whenever the distance between the
two detectors equals an odd half-number of fringe spac-
ings. It becomes obvious in the above derivation of the
quantum-mechanical expression for G' ' that this effect is
quantum-mechanical in nature, having no classical analo-
gy, the reason being the inability of classical theory to
cope with the particle aspect of light.

In any case, the presence of intensity correlations is tes-
timony that interference has taken place. It is interesting
to see, however, that quantum mechanics predicts those
correlations to be significantly stronger than in classical
theory. One might say that the quantum nature of spon-
taneous emission produces, in the specific conditions
presently under consideration, a higher degree of
"structural order" than one would expect from the classi-
cal theory.
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D. Some generalizations

As in Sec. II.C we still generalize our result (4.19) to
the case in which the two sources each contain a larger
number of excited atoms, X and M, respectively. Repeat-
ing the argumentation that led us to Eq. (2.39), we have to
observe that single-atom contributions like (ii) vanish in
the quantum-mechanical description. This means that we
must subtract the term (M+N)f a in the classical for-
mula (2.39), which gives us

G~„'(ri, t;r2, t)=2f a "[M(M —1)+N(N 1)—
+MN +MN cos[k ( i'2i —p2ii +7'i it

—rii)]I .
(4.21)

A formula of this type was first derived by Mandel
(1983).

For M and X&&1, the quantum-mechanical correction
is, in fact, negligibly small, so that the classical and the
quantum-mechanical description practically agree, which
is not surprising, of course. In particular, Eq. (2.40) holds
in both theories in the case M =N( »1).

More interesting is the situation in which the numbers
of atoms, M and N, are not fixed but rather (independent-
ly) fluctuating. We then have to average Eq. (4.21) over
those numbers. Assuming them to be Poisson distributed,
M(M —1)=M, N(N —1)=N, we find the simple re-
sult

G~„'(ri, t;rz, t)=Zf4a 4IM2+N2+MN

+M N cos[k (rii —r2ii+ I' iii

—rii)] I . (4.22)

In the special case M=N, we again arrive at Eq. (2.40)
(with N replaced by N), characteristic of thermal radia-
tion, .which now, however, holds exactly, without the as-
sumption that M and N are large (Mandel, 1983). Hence
the above-mentioned nonclassical effect that is present in
the case of precisely two atoms disappears, as a conse-
quence of fluctuations in the numbers of atoms, even
when X and M are small compared to unity. Obviously,
this is related to the fact that there is a nonvanishing
probability that one and the same source will emit two, or
even more, photons so that two photons being registered
by the two detectors, in some cases, may originate from
one and the same source, a feature inherent, quite general-
ly, in the classical description.

It should be noted, however, that the classical formula
differs drastically from the quantum-mechanical one for
M « 1, N « 1, since then the extra term (M+N )f a in
the classical expression clearly dominates the interference
term, which is proportional to MN. Hence the intensity
correlation function is virtually constant, giving no indi-
cation of interference taking place.

Thus far we have assumed that the atoms idealized as
two-level systems become initially fully excited by some
pumping mechanism. Modern laser technology, however,
makes it possible to realize more general initial condi-
tions. With the help of intense short laser pulses, the
atoms can be prepared in a coherent superposition of the
form

Ig&=cie'
I 1&+c2 I2&, (4.23)

In the two-atom case, the dipole oscillation in question
actually has no influence on the intensity correlation
function G' 'q(r ti;rz, t) since &ai, (t4)&, for instance, is
multiplied by the factor &ai(ti)ai(t2)a, (t3)& [see Eq.
(4.8)], which vanishes by virtue of the anticommutation
relations (4.3) in conjunction with the quantum regression
theorem. Hence G'„„'(ri,t;r2, t) is essentially the same as
in the former case c~ ——0, c2 ——1, the only difference being
the appearance of a common factor c2.

It should be noted that the situation is different when
more than two atoms come into play. Then terms of the
form

& a; (ti )a;(t2) & & aj (t3) & & ak(t4) &

ol

(with all atomic labels ij, . . . being different) will con-
tribute to the intensity correlation function, thus making
it dependent on the difference of the phases Ni and 4?D
corresponding to the two sources. [For details see Mandel
(1983).]

The presence of induced dipo1e moments has an impor-
tant implication for the intensity itself. In fact, the inten-
sity becomes xnodulated in space, thus directly displaying
an interference pattern. Utilizing Eq. (4.4), we can write
the intensity in the form [cf. also Eq. (2.22)]

where the coefficients ci and cq, assumed real, satisfy the
normalization condition e ~ +e 2

——1.
Gur former considerations (corresponding to ci ——0) are

easily extended to the present case (Mandel, 1983). The
new feature is that the expectation values for a and a no
longer vanish, which means that a dipole moment has
been induced on the atoms by the pumping pulse. For
simplicity, we assume that the coefficients ci and c2 are
the same for all atoms; however, we allow the phase angle
4 to differ for the two groups of atoms that constitute
the two sources.

From Eq. (4.23) we easily find the only nonvanishing
expectation values (for normally ordered operators) to be

&Wla l@&=cic2e ' &@Ia'IW&=c,c,e'

(4.24)

G"„'(r,t) = &E' '(r, t)E—'+'(r, t) &

=f (r—ri)&ai(Ti)ai(Ti)&+f (r—ru)&ain't(Tn)au(~it)&+f(r —ri)f(r —rii)[&ai(TI)&&aii(TII)&+c'c ]
(4.25)
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where the abbreviations

Ty=t— (4.26)

+@Ix @x)] (4.27)

where use has been made of Eqs. (4.24), (4.25), (4.17),
(4.6), and (2.18).

The visibility of the interference pattern (4.27) is c x and
thus is generally worse than in the corresponding classical
case, where it equals unity. It approaches the classical
value for ex~1. However, then cz goes to zero so that
the intensity, and hence the detection probability, becomes
vanishingly small.

have been introduced.
In the approximation described by Eqs. (2.28) and

(2.29), Eq. (4.25) reduces to

Gq„'(r, t) =2f a (T, )cz[1+cx cos(k
I
r —rx I

—k
I
r —ru

I

will contain the same fixed number of photons. I shall
show in the following how the same intensity correlations
can be recovered in the free-field formalism.

Let us first consider the simple case of two linearly po-
larized traveling plane waves (labeled I and II) with equal
frequencies but slightly different propagation directions.
These waves can be identified with specific modes of the
radiation field. Since the measurable quantities like inten-
sity and intensity correlations are represented by normally
ordered products of E' ' and E'+', the remaining modes,
being in their vacuum states, give no contributions, so
that only the nonempty modes need to be taken into ac-
count.

%'e are thus able to write

E'+'(r, t) =ei(r, t)qi+eii(r, t)q, i . (4.28)

Here, qi, qii are the familiar photon annihilation opera-
tors taken at t=0, and

(2

E. Fields ~ith fixed photon numbers
ej(r, t) =i

V
exp[i (kj r —coj t) ]pj

In Secs. IV.C and IV.D we studied intensity correla-
tions that are present in the field produced by spontane-
ously radiating atoms, taking explicitly into account the
emission process. Since emission has actually finished
when the observation is made at a wide distance from the
sources, free fields traveling in space can be used for the
description equally well. The essential point is that these
fields, when emitted from a definite number of atoms,

I

(j=I,II) (4.29)

is the classical field strength, in proper normalization, V
being the mode volume. and pj a unit vector indicating
the polarization direction.

Let us assume that the photon numbers in the two
fields, m and n, are sharp. Then the expectation values
for q, q, q q, and q q vanish, and we find from Eq.
(4.28)

Gq„'(r, t)=(E' '(r, t)E'+'(r, t)) =
I
ei(r, t)

I &qiqi)+ I en(r t)
I &qiiqn&

3

Gq„'(r„t;rz, t)= g (Ez '(r„t)E~ '(rz, t)E~+'(rz, t)Eq+'(r„t))
p, o=1

I
ei(rz t}

I &qi qi &+
I en«i t)

I I
exx«z t)

I &qx~xqxx&

+ I
ex«»t} I I en«z t)

I &qxqx&&qxxqn&+ I ex«z t)
I Ieu«x t}

I &qxqr&&qxxqu&

+ I [ei (ri t}exx(rl t)1[eii(rz t)ei(rz t)]+c c I &qiqi & &qixqn &

(4.30)

(4.31)

While from Eq. (4.30) one concludes that no (standing) in-

terference pattern exists, Eq. (4.31) clearly contains in-

terference terms.
In the two-photon case m =n = 1, the expectation

values (q, qi ) and (q„q„) vanish. This reflects the

simple fact that two photons cannot be detected in a field
that contains only one photon. We thus obtain from Eq.
(4.31), putting cox=co» ——co and pi ——pix [see G. Richter
(1977)],

G'„'(rx, t;rz, t)= '

I 1+cos[(kii—ki)(rz —rx}]) .

(4.32)

Obviously, this equation describes an interference effect

I

that is quite similar to that studied in Sec. IV.C [see Eq.
(4.20)].

In the general case m, n &1, Eq. (4.31) gives us (G.
Richter, 1977}

Gq„(rx, t;rz, t)= tm(m —1)+n(n —1)+2mn27TlL)

V

+2mn cos[(kn —ki)(1'z —rx )]]

(4.33)

This result is analogous to Eq. (4.21). From it, we may
also draw similar conclusions to those in Sec. IV.D with
regard to either large or fluctuating photon numbers.

Now, plane waves certainly represent a very special
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form of field distributions, and it appears desirable to ex-
tend our considerations to more general situations. To
achieve this goal, we can utilize a very elegant tool pro-
vided by Titulaer and Cxlauber (1966), who generalized the
usual mode concept. Their procedure is as follows. One
starts from a given complete set of conventional modes
gk(r, t) [e.g., of traveling plane wave type in which case
gk(r, t) is given by Eq. (4.29)], normalized such that the
expansion of E'+ '(r, t) in terms of them reads

receiving
plane

(4.34)

where qk is the familiar annihilation operator for a pho-
ton in the kth mode. A new set of modes hI(r, t) (which
are not necessarily monochromatic) is introduced by the
definition

diap brag~

FIG. 5. Geometrical configuration in which the interfering
waves do not overlap in k space.

hl(r r) g Ylkgk(r t)
k

(4.35)

Ql g Ylk'Vk» Ql g Ylkkk
k k

(4.36)

Owing to the unitarity of the matrix (Ylk), QI and Q~

obey, in fact, the familiar commutation relations for pho-
ton creation and annihilation operators. Hence the well-
known formula for the representation of an n-photon
state applies as well to the present case,

Qtn
in)( ——

, , ivac), (4.37)
(~ t) I /2

where ivac) is the vacuum state of the radiation field.
Moreover, the expansion of E'+'(r, t) with respect to

the new modes is of precisely the same form as Eq. (4.34),

E'+'(r, t) = g h((r, t)Q( .
I

(4.38)

where the coefficients y~k are the elements of a unitary
matrix. Then photon creation and annihilation operators
associated with the new modes can be defined through the
relations

the fields, e.g., by means of suitable diaphragms (see Fig.
5), without affecting the observation. 3

When those diaphragms absorb, with certainty, any
photon falling on them, our device leads to a reduction of
the quantum-mechanical wave function in the sense that
the outgoing wave, when the source consists of a single
atom, either contains the photon or is empty. Hence the
waves actually arriving at the receiving plane are in one-
photon states. Their spatial structure is determined main-
ly by the position of the respective diaphragm and the di-
mensions of its aperture. Now, when the geometry is
chosen such that the two interfering waves do not overlap
in k space (see Fig. 5), the unitarity condition is certainly
fulfilled, so that the Titulaer-Glauber formalism actually
applies.

In more general situations, the calculation becomes
more involved, since a reduction to a two-mode problem
is no longer possible. Then it is preferable, from the
viewpoint of mathematical simplicity, to express the
fields through the atomic variables describing their
sources, as has been done in Secs. IV.C and IV.D.

Hence the usual formalism f'or the description of quan-
tized fields can be applied with equal success in the case
of the generalized modes h(r, t). In particular, the above
results (4.30) and (4.31) remain valid when e&, en are re-
placed by ht, hu. The equations (4.32) and (4.33) retain
their structure, only the spatial dependence of the in-
terference terms will become more complicated, in gen-
eral.

It must be stressed, however, that the form of the two
wave packets h& and hqq cannot be chosen at will, since
the above-mentioned unitarity condition must be satisfied.
In particular, it is not possible to identify these two modes
with two dipole waves originating from different centers.

This difficulty can be overcome, at least partly, by us-
ing the following physical argument. Certainly, for the
purposes of the observation„only those parts of the in-
terfering waves are relevant that impinge on the receiving
plane. Hence we might "cut off" the remaining parts of

F. Historical remarks

The interference effect produced by spontaneously
emitting atoms, as it becomes manifest in the modulation
of the intensity correlation function was actually predict-
ed as early as 1954 by Dicke (1954), jn the context of
cooperative effects in spontaneous emission from many
atoms. In fact, Eq. (92) in Dicke's paper, when special-
ized to the case of two initially excited atoms ( n =2,
mo ——1 in Dicke s notation) located at definite positions r~
and r&&, respectively, reads

3To avoid distortions of the fields by diffraction, the cutoff
(solid) angle should be chosen to be a little larger than required
by geometrical optics considerations.
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w ( kz) = iJO(kz) [ 1 +cos[~k(rII ri)l I (4AO)

The physical meaning of this result is as follows. It is as-
sumed that the emission of a photon in the direction ki
has been observed. The quantity w(ki) is the probability
(per unit time and unit solid angle) that the second photon
will be emitted in the direction ki, and ufo(ki) is the cor-
responding radiation probability for a single isolated ex-
cited atom.

Clearly, Dicke's result (4.40) is equivalent to Eq. (4.20).
It indicates the striking feature [whose nonclassical nature
was stressed by Dicke (1964) in a later paper] that there
are special directions for which the emission of the second
photon is strictly forbidden. Dicke s interpretation, how-
ever, is different from ours. While we consider the ap-
pearance of the factor 1+ cos[hk(r» —ri)] as an indica-
tion of interference having taken place between two dipole
waves emitted independently from one another, Dicke
based his argument on the supposition that any photon is
emitted in a definite direction by the atom. In this pic-
ture, the strong correlation between two emitted photons
can be understood only as an effect exerted by the first
photon on the atom that wi11 emit the second photon.
Obviously, this second atom must, in some way, get infor-
mation about the position of the first atom and the direc-
tion in which it emitted the first photon, in order to be
able to "control" the emission processes in accordance
with the rule (4.40).

This sounds somewhat mystical (at least in the case of
widely separated atoms), as conceded by Dicke himself,
who later commented on his result as follows (Dicke,
1964): "One interesting and somewhat paradoxical aspect
of the correlation and coherence problem being discussed
is the fact that the two radiating atoms could be extreme-
ly far apart, many, many wave lengths, and still exhibit
this correlation effect. One might naively wonder with
such a radiating system, initially in a state for which both
atoms are excited, how the one atom would ever know
about the existence of the other. It is only because of the
presence of the second atom that the radiation distribu-
tion pattern for the emission of the second photon de-
pends upon the direction of emission of the first, It
should be remembered, however, that both atoms are cou-
pled to the same electromagnetic field. In the process of
emitting the first photon, this common couphng results in
the excitation of correlation states between the two
atoms. "

It should be noted that Dicke s supposition is, in fact,
not in accordance with the basic interpretational rules for
the quantum-mechanical formalism. Quantum mechan-
ics in general forbids us to ascribe any physical property
that has become manifest in an observation to the system
as, in Einstein s words (Einstein, Podolsky, and Rosen,

2
exp(i hkri) +exp(i hkrii)

w(kp) =2wp(kz)
2

(b k =k2 —ki), (4.39)

and hence is easily rewritten as

1935), an element of reality, before the measurement.
Specifically, the direction of emission of a photon by a
(localized) excited atom is uncertain as long as no ap-
propriate measurement has been performed. In fact, it is
well known that the emitted field has a definite (total)
spin (which equals 2 in the case of dipole radiation), and
this requires the corresponding quantum-mechanical wave
function to be a superposition of linear momentum eigen-
states

~
k) with virtually all propagation directions com-

ing into play.
The next person to deal with the interference

phenomenon under consideration was Fano (1961).
Stimulated by the observations of Forrester, Gudmund-
son, and Johnson (1955) and Brown and Twiss
(1956a,1956b), he studied theoretically the intensity corre-
lations produced by two independently emitting atoms.
Taking explicitly into account the detection process by
representing each detector by an atom initially in its
ground state, he calculated, in the framework of
quantum-mechanica1 perturbation theory, the joint proba-
bility for both detector atoms to become excited (ionized),
ending up with a formula that agrees with Eq. (4.19). He
clearly stated that the correlation phenomenon in question
is an interference effect. However, he did not mention the
specific quantum-mechanical feature of this result that is
due to the assumption of precisely two excited atoms be-
ing present initially, and hence is, in fact, absent in the
above-mentioned observations in which light from
thermal sources was the subject of investigation.

Seven years later, Dicke's result (4AO) was rediscovered
by Ernst and Stehle (1968), who extended the well-
established Wigner-Weisskopf theory (Weisskopf and
Wigner, 1930a,1930b) to the case of many atoms. Their
physical picture is precisely the same as Dicke's.

To proceed in historical order, I mention a paper by G.
Richter (1977), who, amongst other laser physical prob-
lems, theoretically investigated the intensity correlations
displayed by the superposition of two plane waves with
fixed photon numbers, thereby arriving at the results
(4.32) and (4.33). Since the. fields were statistically in-
dependent, Richter's analysis supports the view that the
corre1ations in question have nothing to do with any mu-
tual influence of the emitters via the radiation field, but
are rather an optical interference effect.

It should be noted that Dicke (1954,1964) and Ernst
and Stehle (1968) were mainly interested in cooperative
effects in connection with spontaneous emission, effects
which one expects to become noticeable only in situations
where the distances between the atoms are less than, or at
least comparable with, the wavelength of the emitted
light. In spite of this, those authors did not include the
dipole-dipole near-zone interaction in their description.
This was done later by Steudel (1971), Steudel and

4Actua11y, Fano's result is more general, since it also describes
the occurrence of beat notes when the level spacings of the two
radiating atoms differ a little.
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Richter (1978), and Th. Richter (1979), who, using the
master equation derived by Lehmberg (1970) for the
atomic variables, took explicit account of both the fre-
quency splitting and the change in the decay rate caused
by the interaction of atoms via the radiation field. Ex-
tending an investigation by Steudel (1971), Th. Richter
(1979) calculated the intensity correlation function
Gz„'(r&, t;r2, t+r) for the two-atom case, which in fact
proves to contain near-zone corrections. These are shown
to contribute as well to the time in-tegrated (both over t
and w) intensity correlation function, thereby reducing the
strength of the correlation. Interestingly, the single-time
correlation function Gq„'(ri, t;r2, t) is not affected by the
dipole-dipole interaction.

The latest contribution to the theory of intensity corre-
lations produced by independent atomic emitters is due to
Mandel (1983). He discussed this problem in the light of
optical interference theory, thereby extending his clear
analysis to include more general (coherent) initial states of
the atoms and Auctuating numbers of atoms. Assuming
the atoms to emit independeritly from each other, he ex-
cluded the possibility that there might be a mutual influ-.

ence during the emission process. Since his results in-
clude Dicke's formula (4.40) as a special case, he left no
doubt that the intensity correlations, whose nonclassical
character he emphasized, are manifestations of photon in-
terference.

Y. CONCLUSION

%%en the term interference is not taken simply as a
synonym for the occurrence of an observable interference
pattern (as it might be by optical researchers), but is more
generally used to denote any effect indicative of the super-
position of optical fields, in the sense that their field
strengths add rather than their intensities, Dirac's famous
statement that "interference between two different pho-
tons never occurs" (Dirac, 1930) proves to be false. This
has been illustrated in the text by some relevant examples.

First, radiation from coherent sources, such as lasers,
has been considered. In view of the close correspondence
of such radiation fields with classical electromagnetic
waves that possess definite amplitudes and phases, one
will not be surprised that in these circumstances interfer-
ence takes place even in the familiar sense that an in-
terference pattern can be observed. Of more interest is
the result of both theoretical and experimental investiga-
tions that this interference persists, without loss of visibil-
ity, when the laser beams are attenuated so that only a
few photons are actually interfering with one another.
According to theory, this should be true even when the
mean photon number in each of the beams is less than
unity. This feature, peculiar as it will appear to common
sense, provides an illustrative example of the obstacles to
an intuitive understanding of quantum-mechanical pre-
dictions.

It is noteworthy that the full equivalence between
quantum-mechanical and classical descriptions in the case
of coherent fields [more generally, fields that have a P

representation, as introduced by Glauber (1963)] rests
upon the fact that the number of photons in such fields is
uncertain, without any upper bound, in principle. How-
ever, when we are dealing with fields produced by a defi-
nite number of atoms, the number of photons is certainly
bound to be not greater than that of the atoms. (At times
long compared to the duration of the emission process,
the two numbers obviously will coincide. ) Then it can no
longer be expected that the quantum-mechanical and the
classical predictions will agree.

Actually, a distinct discrepancy is found in the case of
two emitting atoms. In these circumstances, no conven-
tional interference pattern can show up, since the atoms
radiate with random phases. It is already evident from
classical considerations, however, that the corresponding
intensity correlation function is not constant in space, but
rather exhibits a characteristic modulation, which clearly
results from interference. It may come as a surprise that
quantum mechanics predicts these correlations to be sig-
nificantly stronger than those following from the classical
theory, stating that for certain positions of the two detec-
tors it is impossible to observe coincidences (each detector
being triggered by one photon). Specifically, this happens
when the distance between the detectors equals an odd
half-number of fringe spacings, with respect to the (ficti-
tious) interference pattern that would occur if the atoins
radiated with definite (fixed) phases.

The theoretical analysis reveals that this effect, being
nonclassical in its nature, is intimately connected with the
simple physical fact that a single atoin can emit only one
photon and hence is unable to cause two detectors to
respond. In other words, when a coincidence is actually
counted, one can be sure that the absorbed energy stems
from both atoms. This is, however, not so in the classical
theory, which is, in fact, at variance with the energy con-
servation law in the present case, as far as the detection
process is concerned. Thus it is ultimately the corpuscu-
lar aspect of light that, being properly taken into account
in the quantum-mechanical description, enhances the
structural order that becomes manifest in the intensity
correlations produced by two independently emitted
atoms.
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